中危 google tensorflow 可达断言
CVE编号
CVE-2022-23583利用情况
暂无补丁情况
官方补丁披露时间
2022-02-05漏洞描述
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that any binary op would trigger `CHECK` failures. This occurs when the protobuf part corresponding to the tensor arguments is modified such that the `dtype` no longer matches the `dtype` expected by the op. In that case, calling the templated binary operator for the binary op would receive corrupted data, due to the type confusion involved. If `Tin` and `Tout` don't match the type of data in `out` and `input_*` tensors then `flat<*>` would interpret it wrongly. In most cases, this would be a silent failure, but we have noticed scenarios where this results in a `CHECK` crash, hence a denial of service. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.解决建议
建议您更新当前系统或软件至最新版,完成漏洞的修复。受影响软件情况
# | 类型 | 厂商 | 产品 | 版本 | 影响面 | ||||
1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
运行在以下环境 | |||||||||
应用 | tensorflow | * | Up to (including) 2.5.2 | ||||||
运行在以下环境 | |||||||||
应用 | tensorflow | * | From (including) 2.6.0 | Up to (including) 2.6.2 | |||||
运行在以下环境 | |||||||||
应用 | tensorflow | 2.7.0 | - |
- 攻击路径 本地
- 攻击复杂度 困难
- 权限要求 普通权限
- 影响范围 有限影响
- EXP成熟度 未验证
- 补丁情况 官方补丁
- 数据保密性 无影响
- 数据完整性 无影响
- 服务器危害 无影响
- 全网数量 N/A
CWE-ID | 漏洞类型 |
CWE-617 | 可达断言 |
CWE-843 | 使用不兼容类型访问资源(类型混淆) |
Exp相关链接

版权声明
本站原创文章转载请注明文章出处及链接,谢谢合作!
评论